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ABSTRACT: This paper reYiews the res ults of work sp a nn ing more 
than a decade of resea~cb i nto empirica l mode l ing me thodolog ies. 
During that time, defic iencies and inconsistencies haYe been 
encountered in standard methods which forced the deve l opment o f a 
fundamentally d i fferent approach. Some of the problems 
encountered. the methodology developed by the author, and some of 
the appl ications of the methodology are reYiewed . 

One- half plus one- half is equal to one. Or is it? I f we add a 
ha lf an orange to half an apple. what is obtained? We might 
answer. "some fruit"; but notice the jump that has taken place i n 
think ing during this operat i on. Initially. there are two c l asses 
of objects (half oranges and half apples ) . Then we are forced to 
jump to the creat ion of a th i rd class of objects . We can make 
the jump stronger, for i f one adds a ha lf an orange to a half a 
room. what is obtained? I am certain that we could name this 
"object", but the notion is unf am i l i ar and sor11ehow di ff .;,rent f rom 
what we usually think of when we go through the operat ion of 
add i tion . We feel much more comfortable wi th adding two orange 
hal ves. And yet if the two orange halYes are not alike in all 
as pee ts, what is ob ta i ned7 What then do we r11ean bl,l "one who l.;, 
orange" ? 

Ignoring vitalistic arguments , this is precisely the concern tha t 
made King Solomon's wisdom work so well when he suggested that 
the two claimants to the motherhood of a ch i ld each accept hal f 
of the child . The fact is. that our world is composed of objects 
which have multiple identify i ng qual it ies. If these qualities 
are not eYenly distributed through an object. then part i tioni ng 
the object becomes rather difficult . Partitioning chan ges the 
nature of the object such that the parts must be renamed< i.e. 
in general, partitions belong to a different class t han does the 
whole object). 

The notion of doing arithmetic with decimal fractions is 
decept i Ye and seductiYe. It is essentially incorrect in a 
d i screte world. The assumption is made that all qual i ties a r e 
equally distributed lhomogenous), are therefore equally 
div isible. and furthermore have no fundamentally smallest unit . 
Partitioning of d iscrete objects <sets , spaces . e tc . > results i n 
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obJects of a d ifferent class than the orig inal object s . E3ch 
d iv ision operation. such as those wh ich occurs in converting a 
rat ional t o a decimal fraction, creates another class of objects 
in general . Thus a decimal fraction represents not the 
card inali ty of one class of objects. but many. all h ierarchically 
organized. And irrat i onal fractions carry t his proc ess t o 
extremes. namely. to infini te classes of objects . But continuut. 
mathematics makes no dist i nctions. and no provision f or 
preserving distinctions of class . 

This lack of rigor carries over into interpretat i ons of 
statistics and randomness . Probabilities are generally expressed 
as decimal fr actions having va lues between 0 and 1, the process 
of norma l i zat ion . However, it is not the same to refer to one 
out of every five as to two out of every ten. Knowing two out of 
every ten tells us nuthing about the partitioned set's 
distribution function. so we are not assured of the one out of 
every five. And. of course, the definition of randomnes s 
involves infini t y - e i ther in the continuum or a denumerable 
infinity - which i s itse lf not definabl e construct ively . 

Though count ing . measurement. and arithmet i c often appear in 
close associati on in mathemat ics. physics. philosophy, etc . • 
etc . , these have no clearly defined mathema tical association 
wi thout additiona l assumptions which are usually unacceptable in 
the given context . For example, there is no def i nition of 
mapping or function without the not i on of an open neighborhood 
and discrete spaces can have no open neighborhood. Wi thout a 
definition of function. there is no distance function and no 
metric . If one chooses the discrete topology, no set ever haE a 
near po int in the closure of the set. thus every set is both open 
and closed' On the oth~r hand. no set is connected <except one 
point sets) and all f 1n1te sets are compact . We do not mean to 
imply that a mathemat ics could not be constructed which woul d 
el imi nate these problems. only that the accep ted foundat ions of 
mathematics does not serve the need . 

The mathematics used in economics, stati st ics. phys ics. computer 
science. and engineering is filled with h idden infinities. 
not ions of continuity. lim i ts, open neighborhoods, and even 
randomness . We must not assume continu ity while perform in g 
digi tal operations . No matter how soph ist icated the sophistry. 
paradoxes are bound to result due to the unacknowledged 
infinities. Understanding this situation is particulary 
important in logic. empirical modeling. psychology, and quantum 
physics . Work in linguistic logic <*l and natural language 
acquisition l*l has demonstrated the exi stence of discrete and 
non-commutative structures. yet the very idea of language 
product ion or learning is a process. Empirical models of such 
processes frequently demand a means of expressing notions of 
discrete dynamic generation based upon stat ic t opology: each 
incremental generation must alter the topology and requ i re yet 
another generation based on some incomplete qual i ty (closure. 
representational completeness. etc . >. Thus the representation 
must always be incomplete according to the select ion algor ithm 



and always complete by the structure algorithm. But it is all 
too easy to assume that all is well i n the foundations. only t o 
labor intensively try i ng to resolve the paradoxes that must 
r esult in some abtruse form. 

We are placed i n an a wkward position: how can we cons i stentl y 
def i ne counting, addition. and d ivi sion? How can we t alk with 
integr i ty about the integers and the real number l i ne. the 
d i screte and the continuous. the finite and the random? Indeed. 
how do we go about making models of the world without 
encountering devastat i ng paradoxes and how do these paradoxes 
occur? 

Analogy and metap r1or are the most power ful techn i ques availabl e 
among the aids to communi cat ion and education . Yet . these are 
but the imprec ise. often mi sunderstood and mi s used, relatives of 
the model. Nothing restra i ns us from using models in place of 
analogy and metaphor more than the fact that the operational 
definit ion of a model and its relations h ip to theory has not bee11 
worked out in tec hnical and mathematical detail . A prev ious 
paper (*) provided a foundation f or that t echnical deta i l and 
gave some hint of the power of the tools. Spec if ically. we 
e xamined genera l notions of modeling. the r e lationship to theor y. 
a scheme for classifying models. and some of the reasons that 
models fail . Our procedure described models as r ec ursively 
generated structures and dre w heavily on concepts f rom 
different ia l topology . We were able to show how h ierarchical 
models arise and how such models are susceptible to paradox . 

In early attempts to secure a consistent modeling methodology, 
several difficulties were apparent . Suppose that one defines a 
model as a collection of formal symbols and associated rules o f 
manipulation together wi th a set of rules of correspondence 
mapping the formal symbols to e lements of the set to be modelled 
(usually called the observat ion set although object language is 
perhaps a better terminology) . Clearly one wishes to be able to 
descr ibe an observation set i n several different ways . There a r e 
relationships between these various models which provide both 
local and global structure . This suggests the existence of 
transformations between the various vi ews or descr i p t ions 
(mode ls> of the observation set . 

One demands of a good mode l that the relat ionship be tween 
elements in the observation set be mirrored i n the relations 
between elements of the formalism. This provides us with a 
description of the l ocal structure <or topology>; it does no t 
provide the usually more interesting global properties . For 
e xample. while a good model of flora could provide us with a 
highl y ordered and useful catalog. it will no t. in general. g ive 
a h i erarchical classification nor will i t prov i de connect ions to 
the rest of the world. Ordinary mode l s provide desc ript i ons 



based upon intr i ns ic order in gs but fail to prov ide e ither hi gher­
ordered re lationsh i ps wi th i n the c lass or. what is mor e 
imp ortant. relations hips bet ween models o f different c lasses 
(i . e . , global topolo gy >. 

What is needed then. i s a methodology which gi ve s t he intrinsic 
order in gs. the h ierarc hical orderings, and the connec t ions to 
other orderings and ot her classes <mode l s of other observations 
sets) i n a cons i stent. single for malism . Furthermore. the 
formalism must not impose specific structure. That str uc t ure 
wi ll be imposed i s not the quest ion. Rather. we sugge st that t he 
test of an appropriate structure is a test of the val id ity o f the 
mode l. Gi ven a s uf ficient l y powerful forma li sm. one may choose 
the structure that one imposes and. t he range <local or global ) 
of that structure as wel l . 

One might suppose that the usua l lo g ics (pred icate log ic or the 
lambda calculus) would provide such a f ormalism. The di f f i culty 
with formali sms of t h is sort lies i n the general inabi li ty t o 
move from order ings defined on incl us ion rel a tions <st r ictly 
speaking a quasi - ordering) to order i ngs wh i ch adm it a d istance 
measure or metric . Th is l eads to an impasse as regards model s 
expressed in fo r mal isms such as those gi ven in linear 
differential equations . If one chooses a for ma li s m wh ich g i ves a 
distance measur e 'a prior i ', then one is, of c ourse. met wi th a n 
imp asse from the opposite direc tion - i t becomes dif f icu l t t o 
thi nk of mode l s la la Tarski I of objects on wh ich o ne does not 
usually impose a d i s tanc e measure . 

In essence. we seek a forma l ism wh i ch i s at once powerful enough 
to descr i be high ly structured and unstructured objects. with and 
wi thout.distance measures, both fin i te a nd <constructively. at 
least > 1nf1n1te . Furthermore . the methodology itse l f must 
reflect the pr ocess aspects of t he system being modeled . We do 
not accept stati c. complete model s as meaningful . Certainly th is 
will be some form of a topology a nd speci f icly one which wi ll 
provide a geomet ry when a d istance measure i s chosen . 

The different ia l topology will not do . a s the sets i nvo l ved a re 
already chose n to be loca l ly infinite and continuous . The poi n t 
set topology has the op posite difficulty - it presents no 
consistent means of getting to the usua l conti nuous s t r uctures. 
Comb inatorial topolog ies are not appl icable to model s whi c h mus t 
have a metric. Overall, the e x isting topologies prov ide no c lear 
means of spec i fy ing the order in gs wh ich provide struc ture in a 
model . 

They are founded upon set t heory, wh ich already embeds far too 
much s truc ture • • • sets.are character ized by both cardina l ity and 
ord i nal i ty and the ordinality is given only by a numbe r . there 
be ing no information provi ded as to what structur e was assumed 
<or imp osed ) to obta i n th is ordinality. In view o f t his d ilemma 
we wou ld construc t a t opology wi th the requ ired properties. 



Early forays i nto the breach tha t is parado x arose f rom an 
attempt to treat formalisms <and therefore models a nd theories ! 
more general l y t han presented in the ''class ical view'' . The 
explanatory mode l in g methodology <• McGoveran . 1979 > proposed 
treating interdisciplinary models from a triune perspecti ve: an 
epistemo logy (rather like a pragmatics), a semantics . and a 
procedural syntax. The semantics of this methodology imposes a 
certain set theoretic structure on the model. At the same time , 
the procedural syntax of the methodology imposes a morpholog ical 
structure by allowing for maps between the pragmatics. semantics , 
and s yntax . These characterist ics of t he methodol o gy - i . e . • 
sets with m~pping re lations - suggest that a kind o f di f ferential 
topology ~i d•'~ be operat ive in the mode lling process. 
Unfortuna~~ly, the sets involved are rarely connec ted i n the 
usual sense, nor are they continuous sets <sets of infi n ite 
cardinality) . We found that the methodology made paradoxes 
painful l y obvious. 

When one speaks of creating a model of a phys ical system. one 
begins the formal model with a definition of the observation set. 
The observat ion set, of nee ,;,ss i t y, is f inite. This is trL~e even 
if one assumes that th,;, underly ing space i s conti nuous and t hat 
the population b,;,ing sampled is infi n ite. although we reject suc h 
a contention as unfounded and unfoundable. Nonetheless , one 
generally assumes that the quantitative formalism shoul d be 
inherent l y capable of expressing a (app arently ) cont inuous range 
of values <exceptions inc lude certain aspects of quantum 
mechanics) . The observations are associated wi th a set of 
representations . Th i s representation set constitutes the for ma l 
langua ge o f t he model . When one examines this situation in ter ms 
of maps from an observat ion set to a representation set . 
incons is tenc i es soon arise from the classical definitions of 
maps. sets, spaces, mani f olds. etc. A map can be defined onl y 
over some local topology. This toplogy i s gi ven by the way in 
which one forms an atlas from a set of charts consisti ng of an 
open neighborhood and its map. But a set of observations (or 
representations) is discrete: it can have no open ne i ghborhoods. 
Thus the mapping fails i f treated in any way other than as a 
si mp le association between discrete sets . There can be no 
coordinate systems, no distance functions. no metr ics, no 
general i zed transformat ions. no man ifo l ds. etc. Nevertheless . 
most models do represent the observat ion set as having such 
structure. Indeed. applied mathematics is useless withou t such 
assumpt ions in contradiction to the interdicts of pure 
mathematics . The major difficulty lies in the contradictory 
assumpt i ons of the continuum in the concepts to be used and the 
discreteness of the space to which the concepts are appl ied: no 
consistent treatment has been available. 

~og;£!<!C§:i.QI'.! 
In order to preserve the procedural aspect of the syntax . one 
demands that any solution to these diff ic u lt ies provide a 



foundation compatible with the theory of recursive func t ions . 
This allows us to mainta in a procedural o r process v i e~ . For 
purposes of analys i s. the process must be termi nated. For 
purposes of generating the model cons istently . the termina t i on 
must be arb i trary. To treat the observation set or the s e t of 
formal symbols and operations or the set of correspondence r u l es 
as static entities i s to miss the point of a mode ling 
methodolo gy. Cast i ng a model i ng methodology in recursi o n 
theoretic terms helps us to remember the dynamic natur e of 
emp irical. formal modeling. 

Moreover. the resulting modeling methodology suggests. l ess than 
forma lly. that the occurrence of paradoxes can be r elega t ed t o 
the domain of hierarchical structures wh ic h contain an 
incompatib il ity . The "fi:<" sugge;.ted is not on.: of .:lim i nating 
so-called self- reference a la a Russellian theory of types. bu t 
rather to evolve a formalism for dealing with hierarch i cal 
structures (more closely akin to Frege's lev.: ls l which i s 
sufficiently precise to account for the paradox and uncover t he 
hidden contrad i ction Cor incompatib i lity). Part of the nature o f 
paradox is tho: tendency toward forms of inf in i te regress; 
structures for wh i ch. given a truth value of a conclusion. one 
could not obtain consistent tentat ive truth values for t he 
premi ses . Such structures lead to viable critic isms o f the 
notion of tho: completed infinite: these are essentia l ly the 
construct ionist arguments . Thus it i s also important to prov ide 
a formalism which does not depend in any way on infinit ie s - we 
demand a constructive. finite formalism whi ch is r ic h enouoh to 
provide the usual large cardinalities observed in nature t~rough 
r~curs ive enumeration . 

The formalism thus outlined demands a finite approach to concep ts 
introduc ed 1n the continuum . In short. one desires a formal 
procedure whereby local topology <structure) can be introduced on 
finite collect ions of arbitrary element s . Furthermore. o ne 
desires a sort of mathematicians correspondence pr i nci pal: 
namely, i n the lim i t of collec t ions with large cardinality one 
should recover the standard definitions given by the continuum 
approach . 

Differential topology. if it were inherently capable of deal ing 
wi th f inite sets , and if i t were couched early on in terms which 
made the various ordering relations e xp l ic it. would be t he k ind 
of formalism required for a coherent modeling methodo logy. The 
power of speak ing of the observation set as a man ifold is 
obvious. However. we may not do th is when the sets are f i ni t e 
(all our physically interpretable observation sets are finite > 
with a clear conscience: we have no f inite set definit i on for 
open ne ighborhood. no finite set def init ion f or continuous. not 
finite set definition of the role played by Rn in t he def ini t ion 
of a r11anifold . 

The differential topology was redeveloped with the following 
constra i nts in ' mind: 



1. All ObJects are to b· , . ' th t 
i nfin 1 t~- or to th~- c ~1 . '.vden wf ! .otu _appea l t o the compl eted amp ~ ~ 1n 1n1 es 1ma1. 

2 . The mathematics thus defined are to have the usua l propert ies 
for collections of objects with suffi c ientl y large car d inali t y. 

3. Th"' formal is m is to be f re,e of 1nterpreta t 1on - i . e . • 1t is 
only a typography . .• a (hopeful l y ) consistent way of man ipulati ng 
symbol s . 

4. The entirety is to be recursively constructed. <Thi s wi ll 
ensure c omputab i l i ty when a distanc e measure 1s prov1 ded . l 

The deta i ls of th i s approach and defi n itions of t he t eru 1no l ogb 
used ir the re,st of th is paper can be fo und in <•> . 

We ha lt the infinite regression of ana lys i s of terms i n mode l in g 
by reco gn i zing the Epistemological framework . Namely, we 1l~1yg 
bootstrap into the modeling process with a set of loose 
agreements and definitions. We don't really know what we are 
talk i ng about. But recurs ion theory g ives us a consisten t 
mechan ic s of typography and the procedural f r amework g ives us a 
recursive me thod of gett ing the ''right '' model and def i nitions. 
In some sense we thus have a ''fixed past and uncer tain future '' . 

Havi ng thus given the foundation for a finite different ia l 
geometry. we proceeded to a foundat ion of model ing methodo l ogy . 

Of: A MODELING METHODOLOGY consists of three 
structures: An EPISTEMOLOGICAL FRAMEWORK, A 
FRAMEWORK, and a PROCEDURAL FRA MEWORK . 

broadly def i ned 
REPRESENTATIONAL 

Of: An EPISTEMOLOGICAL FRAMEWORK i s a set of loosely define d 
agreements mad"' e xpl ic i t by those injecting informat ion int o 
model formulation. 

1. agreement of cooperative communications 
• common ly defined t erms as f undamental 

2. 
3. 
4. 

• fundamental vs . derived terms 
• agreement of pertinence 
agreement of i ntent 
agreement on observat i ons 
agreement of explic i t assumptions 
The Razor 
• agreement of minimal generality 
• agreement of elegance 

Of: A REPRESENTATIONAL FRAMEWORK is an abstract formal ism 
consist i ng of a set of symbo ls and a set of rules of 
riian i pulat ion. 

the 

Of: A PROCEDURAL FRAMEWORK is an algori t hm whi ch serves to 
"'stabl ish rules of correspond.,,nc"' between the observat ions (as 



agreed upon in the E- frame ) and the symbols o f the R-f r ame . and 
wh ich then. thr ough recurs ion. serves to modi f y the rules of 
corres pondence and the E-frame a nd R-frame until a suff i c i en t 
level of agreement concerni ng accur ac y i s achieved or the model 
fails Ca la Kuhn ) . 

Thus we see a re lati onshi p between two sets be ing 
established <the 0 and F l with two se ts of r u l es f or modificat i on 
and/ or i nformation extraction . 

We now cast this in ter ms o f the fi nite differenti a l 
geometry. 

Of : An OB SET is a col lect ion of obs ervations . The obs are 
di fferen t iat ed <altered f r om SORT to SETI by one or more o r dering 
re lations which serve to establ ish the latt ice structure of the 
obs. 

Df: An OB SUBSET is a set of obs, eac h of which are ordered by 
the same relat ion. <They may be mulitply connected ) mu lti ­
ordered 

Of: A SORT of FORMAL SYMBOLS is a collection of l abe ls wh ic h may 
be ordered (c onverted t o a SET I by a set of rul es o f 
man ipu la t ion. The SET of FS may be c l osed under the r ul es or 
op en i.e .• f in ite or inf in ite (increasing monotoni c rec urs ion> . 
Gener ally. this serves to form a combinatorial s ystem. 

Df : A RULE OF CORRESPONDENCE is a binary map be tween an element 
of F and an element o f 0. 

Df: A PROCEDURE is a recursion algorithm which Ca l prov ides a 
recursive and exhaust ive enumerat ion of the elements of O and the 
element s of F such that t here e x ists a conti nuous map bet ween O 
and F in the sense gi ven above and wh ic h Cbl provides a recursi ve 
re- paramet er ization of the map such tha t there e x ists a 1-1 map 
between a subset of 0 and a subset of F . 

Ideally the cardinality of these subsets increment s with 
each recur s ion up to the card inality of O itself. 

Obse rvat ion Space 

We begin with a number of observations which ma y be 
clustered <grouped into prearranged classes) into sets O ; these 

i 
observation sets are said to cover the observati on s pace O i n t he 
sense that U 0 =O . Because our 0 must have bounda r ies ( f or any 

i i 
hypo thet ical 0 ; 0 is a subset of 0 1 and is discrete. O i s non­

u u 
Hausdorf. CS ince in the usual t opolo gy all metric spaces are 
Hausdorf, our space is not metr ic i s the usual sense. I 
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Clearly. for any fi ni t e Q, t here are f i nite number of 
possib l e d i sjoint parti tions of Q, namely n ! where n i s the 
card inal i ty of O. However. the part i tions need no t be dis jo int -
we allow dependen t observations and any ob to be i n more t han one 
partition. Thus the number of partit ions i s potentiall y 
inf inite . 

We map each part i tion 0 
N I 

of 0 to sorne 
M 

N 
subspace S of R 

N 
sorne r11ap R • 
"labeled " wi th 

If each such s ubs pace S of 
sorne forrnal syrnbol f , then 

R is arbitr ar i ly 
the part i ti ons 0 of 

i I 

0 may be taken as "obji::cts" in 0 and referred t o by the f . 
N 

T~e R 
I 

then f orrn rules of correspondenc e. 

We defi ne relationships between t he 0 objects i n terrns of 
I M 

t he coord i na t e transformations between the S . 

An exarnination of our defin i t ions te l l us imrnecli a tely tha t 
there is no Q!C!m!~!Cl~!~lgn on S which gives spec i al 
coordinates . In fact. there is no structure at all on S wi thout 
a parameteri za t ion. There e x ists no rnetric . only loca l t opology 
induced by f; global topology is given by card inal i t y and 
partit ion i ng as we ll as coord inate transforrnat ions between 
part it ions g i ving connect ivity . 

I . Having thus defined the basic concepts of differenti al 
geornetry we can proceed to use d i fferential geometry on a 
discrete rnanifo l d to give the mathemat i cs o f rnode ling. 

1 . Choose the ob . set with n elements - a rec . enum. set with 
cardinal i ty n. 

2. 

,:, . 

4 . 

a. Define the n obs ( labels) 
preferably discrete 

b. Choose a set of syrnbols 
for these partitions 

Choose a set of Rules of 
Correspondence to a Formalisrn 

Deterrnine relat i onsh i p between 
obs v is - a -v i s formal i srn 

- partit i on the set into 
d i sjoint subsets 

- label the part i t io11s 

- rna p to some sp ace such as 
Rn (can always choose Rn 

locally for map) must define 
objects on open sets 

though . 

- establish set of coor d ina t e 
transformations and 
d@term in~ i nv3rianc es for 
global properties ! 



This establ is hes model if set of 
obs cardianlity is f ixed . 
Otherwise recursion is required . 

- recurs ion alters p3rt i t ions. 
range of maps. coordinate 
parameLer 1:aL1ons. maps. 

etc. 

Hierarchical models may be defined as follows: 

6 . Start with a model 

7 . 

a. 

Do a many-to-one ma p from 
for malism t o ob label s . 

Remap to formalism . 

9 . Keep in mi nd cons trai nts of 
many- to-one map - this map 
provi des inclusion r e l ations on 
the Representat i on set, thus 
partitions contain partiti ons 
or parts thereof form in g a lattice 
of partitions . 

- r edefi ne the partit i on i ng by 
r-=f i n~'•l.::nt, o\ap 
from image to representati on 
set with new partit ion: 
using inverse map . Thi: 
insures consis t ency f or ne· t 
step . 

- map from new partitions t o 
image sp ace using old ~ap. 

At s tep 7 above. leave some sub-part i t ion uncovered by the new 
partitioning o r redef ine partit ions so t hat i t is locally 
<somewhere on S ) only a permutat ion of the par t itions i . e . • map 
is not locally many-to-one and map is not the inverse map for 
that used in de f ining a mode l CJ above) . Use th is fact to give 
an a lgor ithm for paradox . Thi s g ives all we need for paradox 
e xcept some secondary form a lism - a sec ond recursive enumeration 
or labeling . 

In group theoretic terms one would say that the homomorp h i sm 
fails - is not defined for all points and i s not many-to-one. 
This is becaus e the h ierarchical re- part i t ioni ng must establish a 
covering (previ ous partition covers lower level part ition) and a 
coveri ng must be a homomorphism of the two groups involved . 

To put the proc edurt: for generating parade:: in s impl<:: t.::rms : 

l . Identify the system in which you wou ld l i ke to have the 
par ado>: . 



2 . Now ident ify a system wh i ch will allow you to describe the 
f irst system. Note t ha t the two systems may bo: tho: "same" t c 
some degree of approxi mat ion. 

3 . e.e moro: speci fic. Mak e c er ta i n that the "s.;,cond " syst.;,r11 and 
the "f irs t" are not quite compatibl.;: ( i . .;, . that one contains -
contradiction of at least one element of the other >. 

4. Re-interpret the ''second'' system in such a way t ha t only 3 

portion of it is required to ta lk about the "first", noting t ho: 
way in which this establishes self-r.;,ference for the "fi rst" 
system . 

5 . Insure that the contradiction noted in 3 . lies wi thi n the 
port ion of the ''second'' system described in 4. 

6 . Define a statement about soma arbi trary portion of the 
"second " syste r11 in terms of the "first" systarrt, but r e ferr 1 ng to 
the incompatibi l ity in a pr imary manner las a pr ecedent to a 
consequent or as a direct object perhaps) . 

7 . Th is statement will be a parade:: . 

There have be.;.n many attempts over the past eighty years t c t r ea t 
paradox in a coher ent fashi on. Since the communicat i on to Frege 
by Russell of the contrad iction in naive set theory !Russell's 
parade::) , attempts to formalize representatons and resolutions of 
the log ical paradoxes have played a central role in mathema tics 
and philosophy. The various explanations of the paradoxe s whi ch 
pl ague formali sms and the sev.;,ral more widely known general 
proposals t o remove paradox in such a way as to retain t he more 
useful parts of for malism, have each fa i led in one way or 
another . The f irst attempt to el iminate a paradox from a f ormal 
system was Frege' s weakening of his comprehension ax iom. Whi le 
thi s block.;,d the straightforward derivation of Russell's parado::, 
Lesniewski proved that even the modified ax iom yielded a 
contradiction. Russell's attempts to establish various 
interdictions (self-reference naively denied, the theory of 
types, and its variations> wh ic h would prevent the formulation of 
par ado:: wh 1 l.: reta in 1 ng the requ i red foundat 1 ens of ma them at 1 cs 
fai led. Skolem was of the opin ion that paradox l and unnecessary 
complex ity) could be eliminated by rejecting quantification over 
infin ite doma ins . No:verth.:less, hi s discovery ISko lem' s par adox) 
provides the foundation for tho: Lowenheim-Skolem Theorem wh ic h 
phi losoph ica lly denies the resolut ion. The proof of Gode l ' s 
Second Incomp leteness Theorem is perhaps the p.:nultimat.: examp l.: 
of the importance of parade:; . Godel , rather than attempt ing t o 
resolve par ado>: , showed how to derive and represent a par ado:: 
with i n a formal system if it was sufficiently powerful t o contai n 
Peano arithmetic . Th.;, result was the .;,nd of the search for a 
consistent and complet.;, ax iomati c foundation for mathemati cs . 

We have presented an explanation of paradox - and a general 
r esolut ion - with a completely d i fferent approach . The results. 
however, a re str iki ngly f amiliar, as they are related t o the 
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theory of types. Our explanation derives from a ge nera l 
treatment of the concept of model making - a theoret ic model in g 
methodol o gy. Such a general t r eatment is thwarted i f one i ns i s ti 
on the usua l def in it i ons of concepts such as set . open 
neighborhood. map . number. etc. We are forced t o dea l wi t h 
discrete spaces. and at the same t i me. insure that the us ua l 
de f i nit i ons of concepts i n differential topology are ob t a ined 
whe n one passes o ver to ' i nf i nite' sets <continuous spaces) . 
This is essentially a strengthened version of the approac h o f 
Skolem. Whereas Skolem rejected quantificat i on over inf i n i t e 
domains. we reject the infinite domain as we ll . It is our 
position that 'an infinite domai n ' can have no Bedeutung or 
referenc e and is thus different from the proper name t hat is a 
number. Thus. one can no t reason about 'inf inity ' o r ' orders of 
inf inity ' using the mathematica l and log i cal apparatus designed 
for dealing wi th numbers. The standar d not i on of l i w't f a i l s t o 
d i stinguish between these concepts and is re jected a s a 
consequence. Even the otherwise recurs i ve generat ion o f the 
natura l numbers by von Neumann makes use of a sequence o f 
Dedek i nd cuts of the I infinite> r eal number line. Howe ve r . t he 
logical calculus involved may be taken as devoid of such concepts 
if the generation is given over a discrete set . Then the 
genera ti on i s 'up to' the fin i te card i nality of the s et . 

Fo l low in g Gian - Carlo Rota. we'' .•. provide a systemat ic t echni que 
for sett ing u~ <other > algebras of generating func t io ns su i ted t o 
particular enumerations . Our initial observation is tha t mo s t 
f a mil iar discr ete structures. while often devo i d of any algebr aic 
compos i tion laws. are nevertheless often endowed wi t h a na t ura l 
order structure. The sol ution of the problem of t he i r 
enumeration thus turns out to depend more oft en t han not upon 
associat i ng suitable computat ional dev i ces to such order 
s tructures ••• '' Unlike Rota however. we are not sat isf i ed with a 
language that is dependent on an embedding of disc r ete structur es 
i n a continuous one. We have developed terminology a fres h . 
wi thout the taint of a continuum l and inf in ities) i n which we can 
have no faith. Thus, while this work has some relat ions h i p to 
the reduced incidence algebra. we believe that it i s s uffi c ientl y 
d i fferent to avo id the paradoxes of the inf in i te . 

S i nce the publication of Godel's famous paper in 1931 entitled 
''On Formally Undec i dable Propositions of Erl~fl~l§ ~11b~m11l fi 
and Related Systems I''• the proposal that classical mathematic s 
be formulated as a formal axiomatic theory. and that the theory 
should be proved to be free of contrad i ction <Hilbert. 19041, has 
not been the subject of any serious and concerted effor t with in 
the mathematical and ph il osoph ical communiti es . Ana lysi s 
demonstrates that paradoxes are based upon <someti mes obsc ure ! 



contr ad i ct i on of reasoning or int erpr e t a t i on. Thi s pape r wi l l 
re- e xa mi ne the proof of Gode l 's theorem inasmuc h as it i s the 
ma jor cause of the demi se of Hi l bert' s Program and i ! an examp l e 
of a n i mp ortant resul t based upon paradox . Certa i n assumption! 
in the proof of Godel's Incompleteness Theorem wil l be s ho wn to 
be contrad ictory and tha t this contra d i ct i on defea ts the vali ~ ity 
of the pr oof. 

Formalism or f ormal a x iomat i cs suffered a severe blow with the 
publication of ''On Formally Undeci dab le Propos it ions of Erln~lRl! 
CT@~b!ffil~l£1 and Related Systems I'' <Godel , 19311 . The 
ach i evements i n this landmark paper were numerous. f rom the 
development of a method for enc od i ng the system of Princi p ia 
Mathemat ic a in ar i thmet i c (elementary number theory> to 
demo nstra tions that forty-five number-theoretic pred icates are 
primitive returs ive. The key theorem of the paper ( Theorem Vil 
was t o become famou s and the construction of the proof, un ique 
and unusual though it was. to be deemed f lawless . 

Stated simply. the theorem shows that any s ystem capab l e of 
representing ~lementary number theory would necessar i ly include 
undec idable propositions and thus. demonstrated that classica l 
mathematics could not be proved to be consistent-- i .e .• f r ee from 
contradiction. This resul t ended the search f or a proof t hat 
class ic a l mathemat ic s cou l d be completely axi omatized in a 
c ons istent for mal system <Hi l bert's Program. 1904 1. 

The argument used by Godel is closely related to Richar d's 
anti nomy a nd t o the Liar . However. it i s our thesis that al l 
par adox i s due to a contrad ic tion. The sources of t he 
contradi c tion are categor izable i nto three types• (al the 
interpretation contradicts a rule of the logic system. Cb l t he 
argumen t invol ves a hidden contradict ion bet ween some seem i ngly 
arb i trary and harmless assumptions. or Cc) the argument 
conclusion invol ves an interpret at ion based on complet ed 
inf i nities Cor infinitesimals>. the concept of which we take here 
to be a contradiction in and of i tself. Most of t he more fa mous 
<and more difficult to reso lve ) paradoxes involve another factor . 
Frequently it is called self-reference . Howeve~ . self- reference 
is a specific instance of a more gene r al type of str uc t ure. 
namely h i erarc h ical structures. A hierarchical system may be 
character ized mathematical ly by a lattice of parti tions 
<partially) ordered by refinement . <NOTE: all systems e xhibit i ng 
se lf reference are not strictly hierarchical i n that the bloc ks 
of the part it ions may not be disjo int, but are in f act of non­
empty intersection. Nonetheless. it is possible t o establish a 
hierarch i cal system whenever such a system e x ists .) Self­
reference occurs when. fo r a suitable map. one or more block s of 
a partition in the lattice is mapped to a different partition in 
the latt ice . Then. the block or blocks in question have multiple 
interpretat ions. as both the domain and the ran~e of the map. Of 
course. such a map ties outside the lattice structure. If 
multiple h ierarc hi cal systems are involved as in i nd irect sel f ­
ref erence. then multiple maps are required to estab li s h the self -
ref erence. at least one such map for eac h system ( for detai ls . · 



see ( *) • There is, o f c curse, nothing to p r.;,vo;,nt t ho;, rn a p i r1 

question from bo;,ing a familiar op.;,ration within the system. Th i i 
si mply confus.;,s th.;, nat uro;, of the map. The fact is that tho;, rna ~ , 

i n establ i shing self-referenco;,, violates the ant isymmetric 
postulate and thus destroys th.;, parti a l ord.;,ring. 

Paradoxo;,s wh ic h contain contradictions of type la ) are t he so­
ca ll.;,d common fallac i es . Those o f which conta i n con t1•ad ic t ions of 
type lb) are fr equen tl y more d ifficult t o r.;, solvo;, as the 
contradiction generally has to do wi th r.;,st r ictions on the dom a i n 
of the argumen t Cor universe of discourse) . Paradoxo;,s which 
involve contradictions of type Ccl can also bo;, subtle . i n tha t i t 
is not always o;,asy to see how t he completed infinite is assumed. 
Arguments wh ich use Cantor ' s di agona l mo;,thod run the r i sk of 
demand ing that a system be both f i nito;, and inf inite when t he 
critical proposition i s interpro;,to;,d <Cantor di d not make thi ~ 
error> . Zo;,no's Paradox would havo;, us accept the continuuh1 
.;,mbedd.;,d within the discrete or v ice-ve r sa. 

Godel 's Theorem contains a h i dden contrad ic tion of type ( b l 
above . It is givo;,n here as a paradi gm of wha t can go wrong when 
a system admi t s of mu lt iple into;,rpretat i ons and wh.;,ro;, so;,lf­
reference if abundan t . Even so. th.;,r.;, would be no difficulty 
wer e it not for the (hiddo;,n) contradiction . 

Demonstrating the truth o f this thesis is d iff ic ul t . In what 
follows. do not be mis led i n to believing that we wil l discover a 
li ne wh ic h directly contradicts a nother l i ne of th o;, proof . The 
.;,ne eding is much too complex. Instead, w.;, wi ll point out the tuo 
li nes of the proof which are not d i ro;,c tl y derivo;,d by some rul e of 
the system f rom a previous line. Indeed. the l ines involve t he 
choice of an instanc e of a universa l . Under ordinary 
circ ur11stances. th is choic.;, would be free: if the un i v.;ot"sal is 
true th.;,n c.;orta inly the instanc.;, is tru.;o. How.;,ver. two poin t s 
are important . F irst. the syst.;,m and the proof are purely 
constructive. Thus the domain of th.;, universal is some finite 
li st of objects . Second. e ither of th.;, two c hoi ces would b.;, free 
i f they were not coupled in any way: if the instanc.;, chose n f or 
th.;, on.;, d id no t affect the domain of the universa l in the o t her. 
It is our task to show that th.;, universals and the instantiations 
are coup l ed . If the inst antiations are truly uncoupled, then the 
truth va lues o f the instantiat ions can not aff.;,ct th.;, ou t come of 
th.;, proof. For example, consid.;,r the following: 

All men are mortal. 
1 Socrates is a man . 

Soc r ates is mor tal . 

All ancient ph ilosophers are l iars. 
2 Socrates is an ancient phi losopher . 

Socrates is a liar. 

All men are liars. 
3 Soc rat.;,s is a man. 

Socrates is a l iar . 



4 Socrat es i s mortal or Socrates is a l i ar. 

In t he s ystem cons i st in g of ar guments 1 and 3, c learly, if i t is 
denied that Socrat es is a man, 4 i s false, but true otherwise. 
In the system cons i sting of 2 and 3, if i t is denied t hat 
Socrates is an anc ien t phi l osop her. the truth of 4 is unaffec ted. 
Th i s demonstrates wha t we mean by coupl ing. The doma ins of the 
un iversals of systems 1 and 2 are coupled . The domains of t he 
systems 2 and 3 are not coupled . Of course. the coupling i n 
Godel's proof i s much more subtle since t he proof is g i ven at 
two l evels: number theory a nd Erln£1Rl§ ~11b~m11l~I· 
Nonetheless. once we have ident if ied the candidate propos it i ons . 
we can determine whether or not they are coup l ed by negati ng the 
instantiation of one of the m and determin ing if the conclusion o f 
the p~oof is affected . If it is . then we must determi ne if t h is 
is due to a coupling wi th a direct li ne of t he proof or with 
another i nstantia t ion . I n part icular . between the inst antiation 
of any two un iversal quantifiers, the i r are f our poss ibl e cases 
resulting from the comb inations of affirming and deny in g t he 
instantiat ion throughout the proof . If the pred icates are 
coupled . i t must be the case tha t denying one of the 
instant iati ons l eads to t he contrad iction of the or i gi nal 
conclusions wh i le affirming both r ecovers the or i g inal 
conclusi on . If any o t her result obtains. then either la ) one or 
other of t he predi cates is coup led to a d irect l ine of the proof 
!but not both), or l b) the aff irmat ion or den i al of the 
instant iation has no affect on t he proo~ and is thus a ''dummy'' 
variable. 

Ib~ Ql§9Qn§l ~~~bQg 
The di a gonal method as introduc ed by Cant or i n his proof of the 
ex istenc e of an uncountable set and t hat. in f act, the 
i rrationals were such a se t. (Cantor's second d ia gonal method), 
has been extended by recursion theor ists to quest i ons of 
computability or dec i dability . While the interpretat i on given by 
Can t or is not at is sue . we mus t object to the method as used in 
comput ability theory. 

By a suitable cho ice of a system fro m t hose systems which shou l d 
be susceptib le to the diagonal method . it is pos sible t o show 
that the dia gona l method is a flawed method o f argument. The 
met hod has been applied i n proofs of Godel's Incompleteness 
Theorem among others and yet. by demonstrating t hat it g ives 
wrong results i n one case . we show t hat it i s not trustworthy in 
the mode commonly used for decision and halting problems by 
recursion theorists . 

We take as a start ing point the assumpt ion that all effectively 
computable procedures are representab l e in terMs of a Turing 
mac h ine. Consider all s trings of a given syste m S t hat haYe been 
thus far constructed. Assume tha t there is a Turing mac h i ne t hat 
serves to generate these str ings . <Each instruction of a Turi ng 
machine can be given by a quadruple o f the f orm internal i np u t 
state n. i nput oper ation a . output operation b, internal outp ut 



state m. ) For each stri ng. ther e wi l l be a set o f instructions 
la function) which serves t o cause the Turing mac hine to gener ate 
the stri n g. We can order these sets of i nstructions by ordering 
the output strings . Namely. interpret the str i ng as a binar y 
number. Order the list of output strings by th is i ndex i n 
increasing order . Now. create a catalog index (Godel number ing) 
which simply enumerates the str i ngs - i .e. labe l t he firs t sti·ing 
••1 n , th.:: s.ecot1d strin ~ 11 2", etc.. Li: t ~ach sucl"1 lab-::l r8p r>::::~ r·1t 
the set of i nstruct i ons necessary to generate the given st1·ing . 
All that we have done is effec ti vel y c omp utable . We now have a n 
enumerable list of f unc t i ons which generate the system up to 
output string N. 

Now assume tha t there exists a deci s ion procedure fo r the syste1n 
S. It follows that there e x ists a fun c t i on f which t3kes a 5 
input the index for an en try i n the set of instruct ions 3nd wh i ch 
generates, as output. the string wh ic h would be produc ed by the 
set of i nstructions. The decis ion procedure i s but one step 
beyond this - namely. from the function f , we can construct a 
dec ision procedure h. The function h takes as input a gi ve1i 
string and outputs a 1 i f the string is one t hat wil l be 
generated from the current catalog of functions and outputs a 0 
otherw ise . That this is possible given th e fu nction f is clear• 
h uses f recursively to generate the strings represented by the 
cata l og, c ompari ng each string t o the i nput string unti l it finds 
a match or until i t terminates - i.e. ha lt s . 

Let Q be t he lx +1 )st deri vat ion or set of i nstruc tions. 

Let f 

be the funct ion corresponding to Q . However the 
" ,, 

function f doe s no t exist. Assume there is such a recursi ve f . 
It can be used to def ine a new part ia l function g as follows: 

g ( :: ) = f ( :.:> + 1 < I I J 

Ev idently, we have an algorithm f o r computin g g; namely, to get 
h( x) for a g iven x. generate the li st of der ivat ions out of Q 

·' " then employ Q t o compute f <x i. then a dd one. On the other hand 
,, 

g cannot be partial recursive. If it were. we would have h = 
g f or some x. But then, we would have 

,., 

g lxl = h (x) = g lxl + 1. I I I I> 

a contradiction . Since g i s not 

partial recursive. and the operat ion of adding one to a part i al 
recursi ve funct ion is a part i al recursi ve functi on. it follows 



that f is not partial recurs ive - not effec ti ve l y coo~putable EE 
was assurued . 

Since it wou ld be d ifficult to argue that the construct1.eness 
<effec t ive computab i l i t y) of the system S i s not itself a . al i j 
assump t ion l as assumed ), 1t would seem to follow that the 
decision procedure does not e x ist . However. notice that we ha .e 
not provided an instance of a system S nor an interpretat i on or 
the system S . We now do so . Let t he system S consist of the 
symbols s and • and the following rule of infere nce: 

for a ll x, x = S ---> x ' = S 

Thi s system s hal l have two isomorphic interpr etati ons : 

1) function interpretation : 
s 1s t he zero symbol 

is the operat ion of adding one (successor function> 

2) sentent ial interpretat ion: 
s is the initial string of S <" Th is 1s a string of S" l 

i s t he operat ion of enclos ing in quotes and 
concatenating "is a string of S" . 

Followi ng Godel, both of these i nterpretati ons are partial 
recurs ive . It f o l lows t hat f ormulas <I l and <I l l are, by 
interpretat ion of S , functions of S s i nce they invo l ve on l y the 
operations of adding one t o a g iven function of S . Therefore , 
the contradic t i on <III > mus t li e i n other than the assumption 
that f is part ial recurs i ve and thus the d i agonal method fails . 

The r eason for the fa i lur e is now clear . We generated a system S 
for our enumerabl e l ist up to s tr ing N. The d iagona l method. 
however. argues by induct ion beyond N ( formula <I I> above) to a 
completed l i st where N 1s inf inite . Hence. the diagonal method 
1s ne i ther constructuve nor a valid me thod of proof 1n the 
con te::t of deci sion problems . 

It is interest in g t o note t hat the system cons tructed above 1s 

exactly the t ype of system demanded for e mp ir i cal mode l in g of 
se l f-organ iz i ng systems . At any point, it is ALMOST provab ly 
decidable withi n the s ystem and obv iousl y so outside the syst em, 
only the proof conclusion line is not part of the system <yet ) . 
It i s recursive and consi s t s of a generat i ve aspect <enumerati on ) 
and a structural aspect (dec idab i lity ) . 

It has long been accepted t hat computab ility is synonymous with 
the capabi l i t ies of a Turing mach ine <Church 's Thes is> . Shannon 
11967> has s hown t hat t here is noth ing t hat an infinite Turing 
machine can do. g iven a true random number genera t or supplying 
i t s input. that an i nf in i te Turing machine wi th non-random input 
coul d not . The method of proof used by Shannon depends on t he 
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Turing machine being inf inite and, in fe e t , Shannon goes to great 
lengths to point out that the proof makes no statements about 
finite machines . However. we have argued that a finite Tur ing 
machine can not dec ide whether or not i t : input source 1s •true 
r andom number generator or a pseudo-random number generator . 

Consider a system composed of three elements = I l l a uni 1ersil 
Turing machine. 12> a f i nite memory. and (31 a number generator . 
It wi l l be shown t hat such a system i s incapable of deciding 
whether or no t t he number generator produces repeating binary 
strings of len gth n whenever t he memory is s mal l er than an amount 
m e qual t o n + l o g n . 

For suppose tha t t he Turing mach i ne takes as inp ut a part icu l ar 
string of length n and we wish it t o de t ermi ne whether or not tl1e 
number generator is producing t his string repeatedly. The Tur ing 
machine must consume an amount of memory e qual to n in order tc 
store the string . It can t hen scan the output of the number 
generator . comparing i t to the first symbol of the target st rin~ . 
First. we need a counter to point success ive symbo l s of the 
target s t ring . This will require an amount of memory equal t o'' 
such that n = 12exp xi . Whenever the Turing machine detects the 
symbol pointed t o by t he counter. it inc r ements the counter and 
continues scann i ng . If i t detects a s ymbo l not equivalent to the 
one being poi nte d to, t he counter is r e set to point to the fir s t 
symbol . If t he count er reac hes the e nd of the t arget str i ng I i: 
set to a ll l' s) , then the fu ll str i ng has been detected . The 
counter is r eset t o po in t t o the f i rst s ymbol of the target 
string and the s canning continues . 

It follows t ha t the system can not deci de whether or not the 
target string has been produced if it has memory less than n ~ 
log n . But this means that the system c an not distinguis h 
between number generators which produce repeating st ring; and 
random numbers . Clearly . the symbols in the repeating string! 
wi ll occur with e qual probabil ity. as required for a randcu, 
distribution . However. since the system can not detect that a 
gi ven string is repeating , it can not de t ect that §Q~z s t r ing of 
length n is r epeat ing . Thus. f or s ys tem wi t h l ess than n + log n 
memory. a generator producin g repeat i ng s trings of length n is 
indisti ngui shab l e f rom a gener ator producting random numbers . 

CONCLUS I ONS 

N 
By neglecti ng di sc r e te se ts in R , we are in no di f ficulty so 
long as we r eme mber that defining the me mber s of the image set 
must be recurs ive. Our recursion serves to ma intain the class cf 
elements in the set I insuring an equ iv . class ) . If we use t he 
continuous prop erties and make a Dedekind cut. we must simpl~ 
re~ i nd ourselves t hat in so doing we have changed class 
membership <e.g . • 1/ 2 is not in t he same c l ass as 0 and l l . 
Di vis ion or f rac t ions imposes a l at t ice of part i tions, and t~ i5 
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indicates the presence of a hierarchical mode l . In a s i mi l a r 
fashion, probab i lit 1 o;:s 111ust be e ::pro;:ssed w 1th car.;:: rando1o1 n.;;ss is 
not a well-do;:fined concept over discrete, f i n i te spac -:s . And , in 
contrad istinction to the usual v i ew . w.;: int.;:rpret ana l y t ic 
functions as approx imations to the f i n i te. d 1scr-:te comtinat ori: 
functions requiro;:d by our topology, rather th3n the ot he r way 
around . Given t he corro;:ct discrete un i t and top o l ogy, t ho;: 
combinatoric summation provido;: more accurate informa t ion lh!~ 
does t he analytic integral . 

N 
In a sens.;:, the set of points S in R is the union f the image 
sets f or 111 classes in the domain. Thus we may define a 
distance function on S . We may also define a d istance funct i o1. 
on a discrete se t Ca non-Hausdorff space} but i t will be '' 111~1lti­
va l uo::d" in tho:: sens.;: that the ordering between e le111ents n>.--" .. ot 
produce a single chain: thus tho::re may be more thar. one ";.:th " 
between elements . If we take the distance funct1 n suc h tha ~ tile 
number of elements travers ed is mi nimal. then at best we must 
assume that elem.;:nts i n the str i ng def 1n i ng the d i stanc e 
[ (minimal simple chain ) between any two elements) may in fa:l te 
tw ins under t he equ ivalence class defined by the distanc e 
function . Clearly we do not care if the MAPS are str ic tl y 
recursive; they may be analytic so long as we keep in mi nd the 
c onstraints on the sp ace . 

The formal ism reviewed here has important results with rega1·d t o 
the comb ina torial h ierarchy . Of special interest is the 
s usceptibility of the combinatorial hierarchy to parado x . It i s 
e :: tremel y importan t that such models be consistently interpreted 
if one is to avoid paradox . After all, the other ingred i ent 
patiently awaits the unwary - the very nature of a hierarchical 
model i s self - reference. In addition. this work has other 
results of importance for the combinatorial hierarchy . We he . e 
demonstrated ways to avo id dec idability issues, conc erns ove r 
algorithmic randomness. the problems encountered wi t h d is tance 
functions on discrete or combinatorial topologies. and f i na lly , 
interpretat i ons of probabilities. 

Paradoxes are resolvab le . They are neither intrinsi c t o a syste~. 
or model, nor can they be deYastating to the joi nt cons i stenc y 
and completeness of the formalism . I n another paper we ha ve 
applied these results to l ocate and expose a syntactic fla~ in 
the original proof of Gode l' s Second Incompleteness Theorem. 
Similar results may be expected to f ollow where the logician has 
assumed the legitimate embedding of a paradox in his p1·oof 
schema . Hierarchical models are necessary for the repreEentat i on 
of paradox. The levels of a hierarchical model may be 
interpreted as types or even more consistent with the pr esent 
work. as levels a la Frege. I t is the view of the author that 
h i erarchical models are desirable and ne cessary. It wi ll not de 
to e xclude hi e rarchies nor to limit t he t ypes that •nay be used . 
Nor is i t suffic ient to eliminate quantification over inf i n i te 
domains. Constructive formalisms which adhere strictly to 
finitism are necessary. This is due to t he fact that on~ must 
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not confuse types when the operat ions involve d are type s pec i f :c . 
Type s pec i fic oper at i ons abound i n hierar ch ic a l s ystems : it i s 
gene r al ly not poss ible to der ive a cons i s ten t interpretation of 
an oper at i on def ined at a h i gh leve l of a hier arc hy when i t i s to 
be app li ed to a lower level. The r eason is c l ear : the re finement 
wh ich makes up a h i e r a rchy is a par ti a l ly- or dered parti ticn 
lattice. The maps defined across ref i nement ar s roarly- tc-o~e. 

There i s no un i que i nver se . Thus, the concep t of inf inity ~·~ 
not be i nter preted at t he leve l o f number and i t is f all ac ious to 
en ga ge i n proofs wh i ch combine them i n arguments as t hou gh t he 
t wo were mer geable - that is . that one cou l d be g in wi t li s f ini te 
set and recurs i vel y generate a denume rab l e s e t in the usual 
sense . Th is is a common flaw i n proof schemas wh i ch use 
diagonal ization as used by Kl~en~. The c ont r ad ict i on i ~ obviou E 
in s uc h cas.e s . One roust have "cocn plet·2d t he inf in ite" i n orde1·· 
to der ive some property wh ic h is then app l ied t o t he recurs i vel ~ 
e numerated members. And one good contrad ic t i on l eads t o 
anoth~r ... 

Parade•;: , t hat is . 
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