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AESTRACT: This paper reviews the results of work spanning mors
than 2 decade of reszszrck into smpiriczl modsling methodologies.
During that time, deficiencies and inconsistencies have been
encountered in standard methods which forced the development of =
fundamentzlly different spproach. Sowm= of the problems
encounterad, the methodology developed by the suthor. and some of
the applications of the methodolody zre reviswsad,

One-half plus one-half is =qual to one. Or ics it? If we =zdd =
hzlf an orand= to ha2lf 2n apple. what is obtzined? UWe midht
srnswer, "some fruit'": but notice the jump that has taken place
thinking during this operation. Initially, thsere are two clsz
of objects (half orangss and half apples). Then ws are force
Junp to the creztion of 2 third class of objects. We can make
the jump strongder. for if one adds 3 half an orande to 2 hzlf =
room: what is obtained? 1 am certain that we could nam= this

"ob ject". but the notion is unfamiliar and somehow different from
what we usually think of when we do through the operation of
zddition. We fael wuch more comfortable with adding twe orangs
halwves. And yzt if the two orangs halves are not alike in 211
aspects, what is obtained? What then do we mezn by "one whole
orange""?

Ignoring vitalistic ardumsnts. this is precisely the concern that
made Kind Solomon’s wisdom work so well when he suggdested that
the two claimants to the motherhood of 2 child =ach accept half
of the child. The fact is, that our world is compos=d of ob jects
which have multiple identifying gualities. If these quzalities
are not evenly distributed through an ob ject, then partitioning
the ob ject becomes rather difficult. Fartitioning changss the
nzture of the ob ject such that the parts must be renamed (..

in genarasl, partitions belong to a8 different class than doss the
whole ob ject).

The notion of doing arithmetic with decimal fractions is
deceptive and seductive. It is essentislly incorrect in a2
discrete world., The assumption is made that 211 qualities zrs
2qually distributed (homodenous), are thersfore equslly
divisible. and furthermore have no fundamentzllu smsllest unit.
Fartitioning of discrete ob jects (sets, spaces, etc.) results in



ob jects of a3 different class than the original ob jects. E=zch
division operation, such as those which occurs in converting =
rational to 2 decimal fraction. creates another clzass of ob jects
in general., Thus a3 decimal fraction represants not the
cardinality of on= class of objects., but many, all hierarchicalluy
organized. And irrational fractions carry this procsss to
extremes, namely- to infinite classes of objects. But continuus
mathematics makes no distinctions, and no provision for
preserving distinctions of class.

This lack of ridor carries over into interpretations of
statistics and randomness. Frobabilitiss are gdenerally =upressed
25 decimal fractions having values between @ and 1, the process
of normalization. However. it is not the sane to refer to one
out of every five as to two out of =very ten. inowing two out of
every ten tells wus nuthing about the partitioned set’s
distribution function, so we are not assured of the one out of
every five. And, of course, the definition of randomness
involves infinity - either in the continuum or 2 denumerable
infinity - which is itself not definable constructively.

Though counting. measurement, and arithmstic often spp=ar In
close association in mathematics, physics, philosophy, etc.s
etc.r, these have no clearly defined mathematical association
without additional assumptions which are usuzlly unacceptable in
the given context. For example, there is no definition of
mapping or function without the notion of an open neighborhood
and discrete spaces can have no open neighborhood. Without =
definition of function: there is no distance function and no
metric. If ons chooses the discrete topology. no set ever has =
near point in the closure of the set, thus every szt is both op=zn
and closad! On the other hand: no set is connected (except ons
point sets) and all finite sets are compact. We do not mezn to
imply that 3 mathematics could not be constructed which would
eliminate thes=z problems. only that the accepted foundations of
mathematics do=s not serve the need.

The mathematics used in economics, statistics. physics. computer
science, and engineering is filled with hidden infinitiaes,
notions of continuity. limits, open neidghborhoods, and sven
randomness. We must not assume continuity while performing
digital operations. No matter how sophisticated the sophistru.
paradoxes ars bound to result dus to the unacknowledded
infinities. Understanding this situation is particulary
important in logdic, =mpirical modzlindg. psuchologu. and guantum
physics. Work in linduistic logic (#) and natural language
acquisition (*) has demonstrated the axistence of discrete and
non-commutative structures. yet the very idez of language
production or learning is a8 process. Empirical models of such
processes frequently demand a means of expressing notions of
discrete dynamic dg=neration based upon static topologu: =ach
incremental generation must alter the topolody and require y=t
another gen=ration based on some incomplete quality (closure.
representational completeness, etc.). Thus the represantation
mist always be incomplete according to the selection asldorithae



znd zlwsus complets by the structure sldorithm. EBut it is z3ll
too =3sy to 3ssume that 21l is well in the foundstions. only to
labor intensively trying to resplve the paradoxes that nust
result in some abtruse fora.

We are placed in an awkward position: how c2n we consistentlu
define counting, addition, and divicsion? How can we tslk with
integrity sbout thes intaders snd the real number line. the
discrets and the continuous, the finite and the randon? Indesd:
how do we go sbout making models of the world without
encountering devastating paradoxes and how do thess paradonxes
occcur?

Anzlody and metzpror ars the most powsrful technigues zvailable
zmong the zids to communication and sducation. Yet. thess are
but the imprecise, often misundaerstood and misused., relatives of
the medsl. Nothind restrains us frowm using models in plsce of
znzlogy and metzphor mors than the fact that the opersticnal
definition of 2 modael and its relationship to theory has not been
worked out in technical znd mathematiczl detail. A previous
paper (%) provided z foundzstion for that technicsl detszil and
gave somz hint of the power of the tools. Specificallyr we
examined densral notions of modeling. the relstionship to theory:
g2 schems for classifying models:. and some of the reasons that
models F3i1l. Our procedure described models s recursively
generated structures and drew heavilu on concepts from
diffaerentiazl topology. We wers zble to show how hierarchicsl
models arise and how such models are susceptible to parzdon.

In sarly sttempts to securs 2 consistent modeling methodologu:
severzl difficulties were spparent. Suppose that one defines =
model 2s 3 collection of formal symbols and zscsocizted rules of
manipulation together with 2 s=t of rules of correspondence
ma2pping the formal symbols to slements of the set to be modelled
{usuzlly called the observation set althoudgh ob ject landuade i:s
perhaps 2 better terminolodul). Clesrly one wishes to be able to
describe 2n observation st in severasl different waus. Thers zre
relationships betwesn these various models which provide both
loczl and dlobal structure. This sudgests the existence of
transformastions betwesn the various views or descriptions
{models) of the observation s=t.

One demands of & dood model that the raelstionship betwsen
elaemaents in the obsarvation set be nirrorsd in the relations
betwsen =lements of the formalism. This provides us with =
description of the local structure (or topolodu); it does not
provide the usualluy more interesting dlokal propertiss. Faor
erxample, while 3 good model of flora could provide us Wwith 2
highly ordered and usaful cstalog. 1t will not: in genersl. give
g hiersrchicel classification nor Wwill it provide connections to
the rest of the world., Ordinary models provide descriptions



based upon intrinsic orderingdgs but fzil to provide =ither higher-
ordered relationships within the class or. what s more
important, relationships between models of different clzsses
{i.2.r dlobzl topology).

Whzt is nesded then, is 32 methodolody which dives the intrinsic
orderinds. the hiersrchiczl orderings. snd the comnections to
other orderings snd other classaes (models of other observations
sets) in & consistent: sindle formalism. Furthermors,. the
formalism must not impose specific structurs. That structurs
will be imposed is not the question. Rather. we suddest that the
te=st of an appropriste structure is 3 test of the validituy of the
model. Given a3 sufficiently powsrful formalism. on= may chooss
the structure that one imposess and, the range (locasl or dlobsl:?
of that structurs 35 well.

On= might suppose that the ususl logics (predicste lodic or the
lanbds calculus) would provide such 3 formalism. The difficulty
Wwith formalisms of this sort lise in the deneral inzbilitu to
move from orderingdgs defined on inclusion relations (strictly
spezsking 2 quasi-ordering) to orderindgs which admit 3 distance
messure o metric. This leads to an impass=s as redards models
expressed in formalisms such as those diven in linear
differentizl aquations. If one choosss 2 formalism which gives =
distance measurse "3 priori’, then one is, of coursze, met with an
impasse from the opposite direction - it becomes difficult to
think of modzls (a2 la Tarski) of objects on which one does not
ususlly impose 3 distance measurs.

In essence, we seek 3 formzlism which is a2t once powsrful enoudh
to describe highly structured and unstructured ob jects, with and
Without distance messurss, both finite and (constructively, at
lz2st) infinite. Furthermnors. the methodologdy its=1f must
reflzct the process aspects of the system beind modsled. We do
not accept static, complete models as meaningful. Certsinlu this
Wwill be somz form of 2 topologu and specificly one which will
provide z deometry when a8 distance measure i chossan.

The differentizl topology will not do, as the setes involved sre
glready chosen to be locally infinite and continuous. The point
szt topology has the opposite difficulty - it presents no
consistent means of getting to the usual continuous structures.
Combinstorial topolodies ar= not applicable to models which must
have 3 metric. Overall: the existing topolodies provide no clear
mezﬂ? of specifuingd the orderings which provide structure in =
mod=1.

They are founded upon set theory. which already smbeds fzr too
much structure... sets.are characterized by both cardinality znd
ordinality and the ordinality is diven onlu by 2 number,. there
being no information provided as to what structure was assumed
{or imposed) to obtain this ordinalitu. In view of this dilemnma
W2 would construct 2 topology with the regquired propertiss.



Ezrly forsys into the brezch that is parasdox srose from zn
zttenpt to treat formzlisms (and thersfore models znd theories’
more denaerslluy than presented in the "classicasl wvisw". The
explanztiory modeling methodolody (#MclGoveran. 1979) proposed
treating interdisciplinary models from 3 triune parspectiver  an
epistemnology (rether like & pradmatics):, a3 semantics. asnd s
procedurzl suntax. The semantices of this methodology imposes =
certain set theoretic structure on the model. At the same time,
the procedural suynts:x of the methodology imposss 2 morpholodical
structure by a3llowindg for maps between the pradmatics: samantics,

gnd suntax. These characteristics of the methodologu - i.2.:
zets With mzcppindg relztions - suggdest that 2 kind of differentizl
topology migont be operstive in the modalling process.

Unfortunzi=iy: the sets inwvolved are rarely connected in the
ususl sense, nor are they continuous sets (sets of infinite
cerdinalityl. We found thst the methodolodu made paradoses
pzinfully obvious.

When one speaks of cresting 2 model of a phusical suystem. one
bzgins the formal model with 2 definition of the observation set.
The observztion set. of necessity. is finite., This is true even

if one assum=s that the underluing space is continuous and that
the population being sampled is infinite, although we re ject such
2 contention a2s unfoundaed and unfoundablse, MHNonethelazs, one
generally sssumas that the quantitative formalism should be
inherently capable of expressing 2 (spparently) continuous rangs
of values (e2xceptions include certsin aspects of gquantunm
mechanics). The obsarvations are associated with 2 zet of
representations.  This representation set constitutes the forumsl
languade of the model. When one examines this situztion in ternms
of maps from 2n observation set to 3 repressntation set.
inconsistencies soon arise from the classicsl definitions of
maps, sets, spaces, manifolds, etc. A map can be defined only
over soms locsl tepologuy. This toplogu is given by the Wwsu in
which one forms an stlas from 2 set of charts consisting of an
opan n=ighborhood and its map. But 3 set of ochservations (or
representations) is discrete: it can have no open neighborhoods.
Thus the mapping fails if treated in anu way other than 2= =
simple association betueen discrete sats. Thers can be no
coordinate systems, no distance functions, no metrics. no
generzslized transformstions. no manifolds. etc. Neverthelass,
most models do represent the observation set 35 having such
structure. Indeed. spplied mathematics is uselezss without such
gssumptions in contradiction to the interdicts of pure
methematics. The ma jor difficulty lies in the contradictory
gssumptions of the comtinuum in the concepts to be used and the
digcratenaess of the space to which the concepis are applied: no
congistant treatmnent has been available.

Recursion

In order to preserve the procadursl sspect of the suntzi, one
demands that any solution to these difficulties provide =



foundation compatible with the theory of recursive functions.
Thic allows us to mzintzin 3 procedural or process visw. For
purposes of analysis, the process must be terminsted. For
purposas of gensrating the model consistently, the terminztion
must be arbitrary. To trezt the observation set or the set of
formal sumbols and operztions or the s=t of correspondence rules
zs stztic entities is to miss the point of 2 modeling
methodologu. Cssting = modeling methodolody in recursion
theoretic terans helps us to remamber the dynamic nature of
empirical, formal modeling.

Moreover: the resulting modeling methodolodgy suddgests. less
formally: that the occurrence of paradoxes can be raelagated
the domzin of hierarchical structures which contsin an
incompatibility. The "fix" suddested is not one of eliminating
so-ca3lled self-reference 2 lz 2 Russellian theory of types. but
rather to evolve 23 formslism for dezlind with hisrarchical
structures (more closelu skin to Frege’s levels) which is
sufficiently precise to account for the paradox and uncover the
hidden contradiction {(or incompatibilituyl. Fart of the nature of
paradoxr is the tendency towsrd forms of infinite redress:
structures for which: diven 2 truth value of 2 conclusion:, one
could not obtain consistent tentstive truth valuss for the
premises. Buch structures lead to vizble criticisms of the
notion of the completed infinite: these are sssentially ths
constructionist arguments. Thus it is also important to provide
& formalism which does not depend in any way on infinities - we
demand 2 constructive, finite formalism which is rich snoudh to
provide the ususl larde cardinalities observed in naturs throudh
recursive snumeration.

The formalism thus outlined demsnds 2 finite approach to concepts
introduced in the continuum. In short. ome desires 2 formal
procedure whareby locsl topoleodu (structure) can be introduced on
finite collections of arbitrary elements. Furtheranore. one
desires 3 sort of mathematicians correspondence principsl:
namzly, in the limit of collections with large cardinality on=
should recover the standard definitions diven by the continuunm
approsach.

Differential topolody, if it were inherently cspable of dezsling
with finite sets, and if it were couched early on in terns which
made the various ordering relations explicit, would be the kind
of formslism reguired for a coherent modeling methodologu. The
powsr of spesking of the observation set as 3 manifold ic
obvious. Howzver: we may not do this when the setz are finite
(gll our physically interpretable observation sets arse finite)
With a2 clear conscience! we have no finite set definition for
open neighborhood, no finite set definition for continuous. not
finite sat definition of th:s role playzd by Rn in the definition
of 3 manifold.

The differential topolody was redeveloped with the following
constraints in mind:



1. All ob jects are to be diven without szp

infinite or to the complefed IHFiﬂitEEimag?al v0 the completed

2. The mathemztics

thus defined are to have the ususzl artas
for collections of u propertiss

objects with sufficiently largs cardinzlity.

3. The formslism is to be free of interpretation - i.e.. it is

only 3 typography... 2 (hopefully) consistent way of manipulsting
sudmbols.

4. The entirety is to be recursively constructed. (This will
ensure computability when 2 distance messurs is provided,)

The details of this zpproach and definitions of the terminolodu
used ir the rest of this paper can be found in (=),

o o o o o . —_——— e e ———

We halt the infinite redression of anaslusis of termns in mod=ling
by recognizing the Epistemological framswork. Nems=ly., we always
bootstrap into the modeling process with & set of loose
agreements and definitions. We don't really know what we ars
talking about. But recursion th=ory dives us a2 consistent
mzchanics of typography and the procedural framework gives us =
recursive method of getting the “"right" model and definitions.
In some sense We thus have a3 "fixed past and uncertain futura",

Having thus given the foundation for a finite differantial
geometry, we procesded to a8 foundation of modeling methodologu.

Df: A MODELING METHODOLOGY consists of thres broadly defined

structures: An EFISTEMOLOGICAL FRAMEWORE. A REFRESENTATIOHAL
FRAMEWORK:. a2nd a2 FROCEDURAL FRAMEWORK.

Df: An EFISTEMOLOGICAL FRAMEWORK is 2 set of loosely defined
agreements made explicit by those injecting information intoc ths
model formulation.
1. agreement of cooperative communications
£ commonly defined terms as fundamental
# fundamentzl vs. derived tarms
* agre=ment of pertinence
- agr==ment of intant

L agre=ment on observations
4. adreament of explicit assumptions
o The Razor

# agreemznt of minimal generality
# agre=sment of sl=gdance

Df: A REFRESENTATIONAL FRAMEWORK is an abstract formalisw
consisting of 3 set of symbols and a szt of rules of
manipulation.

Df: A PROCEDURAL FRAMEWORK is an algorithm which serves to
establish rules of correspondence betwsen the obssrvations (3=



adreed upon in the E-frame? snd the symbols of the E-frame. znd
which then, throudh recursion, serwves to modify the rules of
correspondence and the E-frame and R-frame until 2 sufficient
level of adresment concerning sccurscy iz schieved or the model
fzils (& la Huhnl.

Thus we s=e 3 relationship between two seats being
established (the 0 and F) with tuo sate of rules for modificstion
and/or informastion extraction.

We now cast this in terms of the finite differentizl
deometruy.

Lf: An OB SET i=s 3 collection of ohservstions. The obs zre
differentisted (altered from S0RT to SET) by one or more ordering
relations which serve to establish the lattice structurs of the
obs.

Df: An OB SUBSET iz 2 =2t of ohe: esach of which are ordered by
the same relation. (Theu wmau be mulitply conmected? multi-
oroferad

Df: & SORT of FORMAL SYMBOLS ic 2 collaction of labels which mau
be ordered (converted to 2 SET) by 2 2t of rules of
manipulation. The SET of FE mau be closed under the rulss or
open t.2.r finite or infinite (increasing monotonic recursion’.
Generally, this serves to form 8 combinatorial systen.

Cf: A RULE OF CORRESFONDENCE iz 3 binary msp betuween zn elen=snt
of F and an =lzmzent of 0.

Of: A PROCEDURE is 3 recursion aldorithm which (2) provides =z
recursive and exhaustive snumzration of the elements of 0 and the
zlemznts of F such that there 2xists 3 continuous map betwsern 0
and F in the sanse given sbove snd which (b)) provides 3 recurszive
re-paramnzterization of the map such that thers z:xists 3 1-1 wmap
between 3 subset of 0 and 2 subset of F.

Ideally the cardinzlity of these subsets increments with
2ach recursion up to the cardinalitu of 0 itself.

Observation Space

We begin with a2 number of observations which may be

clustered (grouped into prearranded classes) into sets 0 ;7 thece
i
observation s=ts ares said to cover the observation spsce 0 in the
gsense that U 0 =0. Because our 0 must have boundariss {(for anu
i
hypoth=ticasl 0 7 0O is 2 subset of 0) and is discrete, 0 s non-
W u

Hausdorf. (Since in the usuzl topology 211 wmetric spsces zrs
Hzusdorf. our space is not metric is the ususzsl sense.)



Clearly: for zny finite 0; there zre finite number of
possible disjoint partitions of O, namely n! uwhere n is the
cardinality of 0. However, the partitions nesd net be dis joint -
we 3llow dependent observetions and any ob to b2 in more than one
partition. Thus the number of partitions iz potentizally
infinite.

M
We map =ach partition 0 of 0 to some subspsce & of R by
M i M N
some map R . I1f =wach such subspace § of B is arbitrarily
"labeled" with soms formal symbol £ » then the partitions 0 of
i i
0 may be taken 2 "objecte" in 0 and referred to by the f .

H i i

The R then form rules of corpsspondence.

We define relationships betwsen the 0 objects in teras of
i M
the coordinate transformstions betwesen the 5

Models

An examination of our definitions tell us immediaztely thst
coordinates. In fact: thers is no structurs 2t 311 on § without
2 parameterization. Thers exists no metric. only locsl topology
induced by f: dlobsl topolody is diven by cardinality and
partitioning 22 well 25 coordinate transformastions between
partitions diving connectivity.

I. Havind thus defined the basic concepts of differentisl
gecmetry we can proceed to use differentizl dgeometry on =
discrete manifold to dive the masthemzstics of modsling.

B Choos= the ob. set with n elepents - 3 rFec. enum. st with
cardinslitu n.

2o 2. Define the n obs (labsls) - partition the zat int
prefersbly discreta dic joint subsetz
b. Choose 2z set of symbols = label the partitions
for these partitions
3 Choose & set of Rules of - map to some space such ==
Correspondence to & Formalism Rn (can always choosa Rn
locally for map) must define
ob jects on op=en sets
thoudh.
4 . Detarmine relstionship betwesn - establich 22t of coordinzts
obs wig-z-vis formzlicsm traznsformstions znd

datermnine invariances for
glokzsl propertiss!



D This estasblishes model if s=t of - recursion slters partitions.

obse cardianlity is fixed. rang= of maps. coordinats
Otherwise recursion is requirsd, parameterizations. maps.
atc.

- S

Hierarchical models may be defined as follows:

-1 Start with 3 model

s Do 2 manu-to-one map from - redefine the partitioning by
formalism to ob labels. refinement . map
from imade to representation
tio

s2t with new partition
using inverse map. Th
fo

insures consistencu r next
step.
8. Remzp to formalism. - map from new partitions to

im3age space using old map.

Pe Keep in mind constraints of
many-to-ons map - this map
provides inclusion relations on
the Representation set, thus
partitions contain partitions
or parts thereof formning 2 lattice
of partitions.

Far

i

dox

At step 7 above. leave some sub-partition uncovered by the nawu
partitioning or redefine partitions so that it is locally
{(somewhere on 5) only 3 permutation of the partitions i.=.: map
is not locally many-to-one and map is not the inverss wmap for
that used in defining & wmodel (3 above). Use this fact to give
an algorithm for paradox. This gives 2ll we nesd for parado:
aicept some secondary formalism - a second recursive enumeration
or labeling.

In group theoretic terms one would ssy that the homowmorphism
fails - is not defined for all points and is not many-to-one.
This is because the hiszrarchical re—partitioning must establish =
covering (previous partition covers lowsr l=vel partition) and =
covering must be 2 homomorphism of the two groups involved.

To put the procedurs for generating parado: in simple terms:

1. Identify thes system in which you would like to have the
paradon.



2. Now identify a system which will 3llow you to describe the
first system. Note that the two systems may be the “sam=" to
some dedree of approximation.

3. Bz more specific. Make certain that the “second" suystan and
the "first" are not quite compatible (i.=. that one contains =
contradiction of at least one =lament of the other).

4, Re-interprzt the "second" suystem in such 3 way that only =
portion of it is required to talk about the "first", noting ths=
way in which this establishes self-reference for the "first”
systen.

5. Insure that the contradiction noted in 3. lies within the
portion of the "sscond" system described in 4,

4. Define a statement about some arbitrary portion of the
"gecond" system in terms of the "first" system., but referring ic
the incompatibility in & primary manner (3s & precedent to 2
conszquent or as a direct ob ject perhaps).

7. This statement will be & paradox.

There have besen many attempts over the past =idhty uy=ars tc trast
paradox in & coherent fashion. Since the communication to Frege
by Russell of the contradiction In naive set theory (Russzll’s
paradox), sttempts to formslize represantatons and resolutions of
the logical paradoxss have playsd a central role in mathemstics
znd philosophu. The various explanations of the parzdoussz which
plagque formalisms and the several more widely knoun gensrzl
proposals to remove paradox in such 3 way 3s to retsin the more
useful parts of formalism, have each failed in one way or
gnother. The first sttempt to =liminate 2 paradox from =z formsl
system was Frege’s weakening of his comprehension sxiom. While
this blocked tha straightforward derivation of Russell's paradoi:
Lesnieswsk i proved that even the modifisd axion yislded =z
contradiction. Russell’s asttempts to establish various
interdictions (self-refersencs naively denied, the thsoruy of
tupes, and its variations) which would prevent the formulaztion of
paradox while retazining the required foundations of mathemstics
fziled. Skolem was of the opinion that paradox (snd unnecessary
complexity) could be eliminated by re jecting quantification over
infinite domains. MNevertheless, his discovery (Skolem’s parzdos)
provides the foundation for the Lowenheim-Skolem Theor=m which
philosophically denize the resolution. The proof of Godel's
Second Incompleteness Theorem is perhaps the penultimstse a2xawmpls
of the importance of paradox. Godel, rather than attzmpting to
resolve paradox. showsed how to derive and represent = paradox
within a2 formal system if it was sufficiently powarful to contzin
Fesno arithmstic. The result was the and of the s=arch for =
consistent and complets axiomatic foundation for mathematics.

We have presented an explanation of paradox - and 2 general
resolution = with 2 completely different approach. Thes results,
howsver, are strikingly familiar, 3s they are related to ths



theory of types. Our explanstion derives from = denerzl
treztuent of the concept of model making - 3 theoretic modeling
methodolody. Such 2 generzl treatment is thuasrted if one insists
on the usual definitions of concepts such 38 set, oOpen

ne i ghborhood, map: number, etc. We are forcsd to dezl with
discrete spaces; znd 2t the same time, insurs that the ususl
definitions of concepts in differential topology zre obtzinsd
when one passes over to "infinite’ sets {(continuous spacss’.
This is essentizlly & strendthenszd varsion of the spprozch of
Skolem. Whersas Skolem re jacted quantification over infinite
domaing, we reject the infinite domain 85 well., It is our
position that "an infinite domzin’ can have no Bedeutung or
reference and is thus different from the propsr name thst iz =z
number. Thus: one can not resson sbout "infinity’ or “orders o
infinity” using tha mathematiczl and lodical spparstus designed
for dezslind with numbers. The standsrd notion of lie 't fzils to
digtinguish betwean these concepts and is rejected a2 2
consequance. Even the otherwise recursive deneration of ths
natursl numbsrs by von Neumann makes use of 8 saquence of

Dadek ind cuts of the (infinite) resl number lins. Howsver, the
lodical calculus involved may be taken a3s devoid of such concepts
if the gensrstion is diven over 3 discrete s=t. Then the
generation is "up to” the finite cardinality of the s=t.

-+

Following Gian-Carlo Rota, we "... provide 3 systeastic techniqus
for setting up (other! z2ldehras of densrzting functions suited to
particular snumesrations. Our initizl observation is that most
familiar discrete structures, while often devoid of zhnuy sldebraic
composition laws: ars nevertheless often endowed with 2 naturszsl
order structure. The solution of the problem of their
gniumerstion thus turns out to depend more often than not upon
gssociating suitable computationzl devices to such order
structures..." Unlike Rota howsver, we are not satisfisd with =
language that is dependent on an smbedding of discretse structurss
in 2 continuous one. We have developed terminologu =fresh,
Wwithout the tazint of a2 continuum (and infinities) in which we czn
have no faith., Thus, while this work has some relztionship to
the reduced incidencs zsldebra. we balisve that it is sufficientlu
different to avoid the parzdouxes of the infinite,

AFPLICATIONS

and Related Systems I", the proposal that classical mathematics
b= formulzsted as 2 formal axiomastic thesory. and that the theory
should be proved to be fres of contradiction (Hilbert, 1924), has
not baen the sub ject of any serious and concerted =ffort within
the mathematical and philosophical communities. Anzlusis
demonstrates that parsdoxss 3re based upon (sometines obscures)



contradiction of reasoning or interpr=tation. This paper will
re-sxamine the proof of Godel’s theorsem inzsmuch 28 it iz the

s jor cause of the demise of Hilkert's Frodram and iz an exznpls
of an important result based upon paradon. Certain sssuwmplions
in the proof of Godel’s Incompletensss Theorem will be shown to

be contradictory and that this contradiction defests the validity
of the proof.

Faormzlism aor formal sxiomatics suffered z severs blow with the

Mzthematics and Related Systems I" (God=l., 1931). The
achievements in this landmark paper wers nunerous. from the
development of 2 method for encoding the system of Frincipis
Mzthemnaticz in arithmetic (elementazry number theoru) to
demonstrat ions that fortu-five number-theoretic pradicates are
primitive recursive. The key theorem of the paper (Theorsam VI
was to become famous and the construction of the proof. unigus

znd unusuzl though it was: to be deemed flawless.

Stated simply, the theorem shows that any system capsble of
representing =lementary number theory would necessarily includs
undscidasble propositions and thus. demonstrated that classzical
mathematics could not be proved to be consistent--i.e.. fres from
contradiction. This result ended the search for = proocf thst
clzecical mathamatice could be completely axiomatized In =
consistent formal system (Hilbert’s Frogram, 17947,

The ardumsent usad by Godel is closely related to Richerd’s
antinomy and to the Lizr. Howsver: it is our thesis that a1l
paradox is dus to 3 contradiction. The sources of the
contradiction sre catedorizable into three tupes: (2) the
interpratation contradicte 2 rule of the lodic system. (bB) ths
ardgument involwves 3 hidden contradiction betwesn some sesmingly
arbitrary and harmless assumptions: or (c) the asrgument
conclusion involves an intarpretation based on completad
infinities (or infinitesimals): the concept of which we tzke here
to be 2 contradiction in and of itsalf. Most of the mors famous
(and more difficult to resolve) paradoxes involve another factor.
Fraquently it is called self-refarence. Howsver. s2lf-reference
is @ specific instance of a more deneral tupe of structurse,
namzly higrarchical structures. A hizrarchical syustem may b=
characterized mathematically by 2 lattice of partitions
(partially} ordered by refinement. (NOTE: 211 sust=ms exhibiting
self reference are not strictlu hierarchical in that the blocks
of the partitions may not be disjoint, but ars in fact of non-
empty intersection. MNonstheless, it is possible to estzblish
hisrarchical system whensver such 2 sustem exists.) Self-
reference occurs when, for a suitable map. one or more hlocks of
3 partition in the lattice is mapped to 3 different partition in
the lattice. Then, the block or blocks in question have multiple
interpretations: as both the domzin and the rande of the map. OF
cours=, such 2 map liss outside the lattice structure. If
multiple hierarchiczsl systems are involved as in indirect self-
reference, then multiple maps are reguired to sstzblish the self-
reference, st least one such map for each sustem (for detzils.

iu



ges (%), There is, of course, nothing to prevent the azp in
guestion from being 3 familizr operation within the systen. Thiz
simply confuses the naturse of the map. The fact is that the asg
in establishing self-reference, violates the antisummetric

postulate znd thus decstrous the partizl ordering.

Faradoies which contain contradictions of tups (3} are the so-
celled common fzllaciss. Those of which contzin contradictions of
tupe (b} are frequently more difficult to resolve 28 the
contradiction generally has to do with restrictions on the domzsin
of the zrdument (or universe of discourssl!. Farazdoxes which
involve contradictions of tupe () czn z2lso be subktle. in thet it
is= not 3lways sasy to see how the completed infinits is sssuned.
Arduments which usse Cantor’s diadonsl method run ths risk of
demanding that 2 sustem b2 both finite znd infinite when the
critical proposition is interpreted (Cantor did not make this
arror ). Zeno’s Farasdeyw would have wus accept ths comtinuum
siibedded within the discrete or vice-verss.

Godel"s Theorem contazine 3 hidden contradiction of typ=s (b}
zbove. It is diven here 25 2 paradigm of what can do wrong when
3 system admits of multiple interpretzstions and where sa21f-
reference if zbundant. Even so. there would be no difficulty
were it not for the (hidden) contradiction.

Demonstrating the truth of this thesis is difficult. In what
follows:, do not be misled into bzlisving that we will discover =
lirne which directlu contradicts another line of the proof. Ths
encoding is much too complex. Instezd: we will point out the tuo
lines of the proof which zre not directly derived by soms rule of
the system from 3 previous line. Indesd. the linzz involve the
choice of an instance of 2 universal. Under ordinary
circumstances, this choice would be free! if the universsl iz
true then certainly the instance is trus. Howsver, two points
are importsnt. First. the system and the proof are pursly
constructive. Thus the domain of the universal is some finits
list of objects. Second, 2ither of the two choices would be free
if they wers not coupled in any wau’ if the instance chosen for
the one did not affect the domzin of the universzsl in the cther.
It is our task to show that the universals and the instantiztions
are coupled. If the instantiztions are truly uncoupled: then ths
truth values of th: instantiations can not affect the ocutcome of
the proof. For exsapls, consider the following:

ALl men are mortal.
i Socrates is 2 man.
Socrates is mortal.

All ancient philosophers are liars.
Socrstes is an ancient philosopher.
Socrates is a2 liar.

Fa

All men are lisrs.
5 Socratas is 3 man.
Soccrstes is 2 lisar.



4 Soccrates is mortzl or Socrates iz 2 lisr
In the system consisting of argumsnts 1 and 3, clearly. if it iz
denied that Socrates is 3 marn: 4 ics fzlsa: but true otherwizs

In the systam consisting of 2 2nd 3, if it is denisd that
Socrates is an ancient philosopher. the truth of 4 is unaffected.
This demonstrates what we mean by coupling. Ths domzins of the
universasls of systems 1 and 2 sre coupled. The domsins of the
systems 2 and 3 are not coupled. OFf course, the coupling in
Godel"s proof is much mor=s subtle since the proof is given at
twa levsls: numbsar theory z2nd Principis Malhbhsastics.
Monetheless, oncs We have identifised the cendidzste propositions.
We can deteraine whether or not they ars coupled by nedating the
instantiztion of one of them and deternining i¥ the conclusiorn of
the proof is sffected. If it is. then we must determine (f this
s due to 2 coupling Wwith 2 direct line of the proof or with
snother instantistion. In particulsr: betwesn the instsntistion
of anu two universasl gquantifiers: their are four possible cases
resulting from the combinations of affirming and denying ths
instantizstion throughout the proof. If the predicates are
coupled, it must be the czse that denuing one of the
instantiztions leads to th:s contradiction of the oridinzl
conclusions while affirmning both recovers the originsl
conclusion. If any other result obtaine, then either (2) one or
other of the predicates i coupled to & direct line of the proof
(but not both): or (b) the affirmnation or denizl of the
instag%iatiaﬂ has no sffect on the proof and is thus = "dumsuy”™
varisbla,

The dizdonal method 35 introduced by Cantor in his proof of the
z:xistence of an uncountablese set and that, in fact. the
irrationals were such 2 sat, (Cantor’s second dizdonsl method! .
hzs been extended by recursion theorists to questions of
computsbility or dacidasbility. While the interpretstion diven bu
Cantor is not a3t issus, we must objact to the method s used in
comnputasbility theory.

By 2 suitable choice of 2 system from those systems which should
be susceptible to the diadgonal method, it is possibl:e toc show
that the diadonal method is & flawed method of arguasnt. The
method has been applied in proofs of Godel's Inconpletensss
Theorem among others and yet, by demonstrating that it gives
wrong results in one case, we show that it is not trustuworthy in
the mode commonly used for decision and halting problems by
recursion theorists.

We take 22 2 starting point the sssumption that 211 effectivelu
computzble procedurss are reprasentable in terns of 2 Turing
machine. Consider 211 strings of 2 given sustem S that hsve besn
thus far constructed. Assume thast there is 3 Turing maschine that
serwes to generste these strings. (Each instruction of =2 Turing
mechine can be given by 2 quadruplse of the form internal input
cstzte n, input operation =z. output operation k. internal output



state m.) For sach string: there will be 3 set of instructiaons
g function) which serves to causs ths Turing machine to denerste
the strind. We cen order these sets of instructions by ordaring
the output strings. Namzly, interpret the strind 2z 2 bBinsry
number . Ordar the list of output strinds by this indzx in
increasing order. Now: creazte 3 cstslog index (Godel nusber ing)

which simply enumeratas the strings - i.2. label the first string
"1": the second string "2". etc.. Let =ach such lsbel represent

the set of instructions nacessary to gensrate the given string.
All thet wsz have done is effectively computzble. We now havse zn
enumeragbls list of functions which denarate the sustem up to
output string N.

Mow assume thst there sxists 3 decision procadure for the sustan
2. It follows that there sxists 2 function f which tzkes a=

input the index for an entry in the set of instructions znd which
gererates. 3s output: the string which would be produced by the
zet of instructions. The decision procedure is but ons step
beyond this - namely, frowm the function f: we can construct 2
decision procedure h., The function h taskes 3= input 2 diven
string and outputs 2 1 if the string is one that will b=
gen=zrated from the current catalod of functions and outputs =
otherwise. That this is possible diven the function £ iz clear:
h uses f recursively to generate the strinds represented by th
catzlod, compsring each string to the input string until it finds
g match or until it terminstes - i.2. halts.
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Let @ be the (x+l)st derivation or set of instructions.
Lat € ¢33
be the function corresponding to @ . However the

function f doss not exist. Assume there is such 2 recursive f.
It can be used to define 2 new partizl function g 3= followe:

gix) = ¢ (32 + 1 5
Evidently, we have zn sldorithm for computing gs nameluy, to get
hix) for a diven x, denerate the list of derivations out of ©

then employ @ to computs £ (). then z2dd one. 0On the other Haﬂﬂ

Fa

g cannot be partizl recursive. If it were: we would have h =
g for some . But then, we would have

g (%) = hix) = g () + 1, (II1)

g contradiction. Since g is nmot

"

partial recursive, and the operstion of adding one to 3 partiszl
recursive function is a8 partizl recursive function, it follows



that f is not partial recursive - not effectively computable ==
was assumad.

Since it would be difficult to argue that the constructivenzss
(effective computability) of the systew S is not itself s valid
gssumption (3s asssumed), 1t would seem to follow thst ths
decision procedure does not exist. Howsver, notice that we hz.=
not provided a2n instance of 2 system S nor 2n interpretztion of
the system S. W= now do so. Let the system S consist of the
symbole s and 7 and the following rule of inferencs:

for all Xy = § ===> g' = §
This system shall have two isomorphic interpretations:

1) function interpratation:
s iz the zero symbol
* is the op=ration of adding on= (successor function)

2) sententizl interpretation:
s is the initial string of S ("This is &8 string of 5")
’ ie the operaztion of &nclesing in gquotes and
concatenating "is a8 string of S".

Following Godel: both of these interpretations are partial
recursive. It follows that formulas (I) and (I1) are, by
interpretation of S, functions of S since they involve only the
operations of adding one to 8 given function of S. Therefors,
the contradiction (III) must lie in other than the assumption
thet £ i=s partial recursive a2nd thus the disgonzl method fsils.

The reason for ths failure is now clesr. We denerated 2 system S
for our enumerable list up to string N. The disgonal method.
however. arduss by induction beyond N (formuls (II) sbove) to =
completsd list where N is infinite. Hence. the dizagonzl method
is neither constructuve nor a valid method of proof in the
context of decision problems.

It is interesting to note that the system constructed shove iz
gxactly the type of system demanded for empirical modeling of
self-ordanizing systems. At any point, it is ALMOSET provably
decidable within the system and obviouslu so outside the susten:
only the proof conclusion line is not part of the system (yet).
It is recursive and consists of 2 gensrative aspect (ehumerastion)
shd 8 structural aspect (decidability).

Random Number Gensrstors

It has longd been accepted that computzbility is synonymous with
the capabilities of 28 Turing machine (Church’s Thesis). Shannon
(1947) has shown thast there is nothing that an infinite Turing
machine can do: diven a true random number dgenerator supplying
its input, thzt an infinite Turing machine with non-randon input
could not. The method of proof used bu Shannon depends on the



Turing machine being infinite and, in fact. Shannon doss to grest
lengths to point out that ths proof mskes no statanents sbout
finite machines. However: we have argusd that a3 finite Turing
machine can not decide whether or not itz input source is = trus
random number denerator or & pseudo-random number gensrzstor.

Consider 3 system composed of thres sleaments: (1) 2 universszl
Turing machine, (2) a8 finite nemory. and (3} 3 number generzlor.
It Wwill be shown that such 3 system is incapable of deciding
whether or not the number generator produces repesting binary
etrings of lendth n whensver the menory is smaller than an svount
m =qual to n + log n.

For suppose that the Turing machine takes as input 2 particulsr
string of lendth n and we wish it to determine whether or not the
number denerstor is producing this string repestedly. Thes Turing
machine must consume an amount of mewmory =gqual to n in order tc
store the string. It can then scan ths output of the number
generator. comparing it to the first symbol of ths targdet string.
Firet,: we need 2 countar to point successive symbols of th=
target strindg. This Wwill require an amount of memory =qual to .
such that n = (2exp ). Whenever the Turing machine detects the
synbol pointed teo by the countar, it increments the counter and
continues scanning. If it datects 3 symbol not equivalent to the
one being pointed to. the counter is reset to point to the first
symbol. If the counter reaches the end of the target string (is
set to 211 17s): then the full string has been detected. The
counter is reset to point to the first symbel of the target
string and the scanring continues.

It follows that the sustem can not decide whether or not the
target string has been produced if it has memory less than n +
leg n. But this msans that the system can not distinguish
between number denerastors which produce repesting strinds and
random numbers. Clesrly. the symbols in the repesting string
will occur with =qual probability, as rsquired for 2 randow
distribution. Howsver, since the system can not detact that
givan string is repeating: it can not detect that sows strind cf
length n is repeating. Thus, for system with less thsn n + log n
memory, @ generator producing repeating strings of length n is
indistinguishable from 2 generator producting random numbers.

Wi

CONCLUSIONS

N
By nedlecting discrete sets in R ; we are in no difficulty =so
long as we remember that defining the meambers of the image s=t
must be recursive. Our recursion serves to mzintain the clas=s cof
elemants in the set (insuring an equiv. class). If we use ths
continuous properties and make 3 Dedekind cut, we must sinplyu
remind ourselves that in so doing we have changed class
menbership (2.4d.- 1/2 is not in the same class 3s @ and 1),
Division or fractions imposes a lattice of partitions, and tris

R -



indicates the precence of 3 hierarchical model. In 2 similsr
fashion:, probzabilities must be expressed with care! randownsszs |
not 2 well-defined concept over discrete, finite spaces. And: i
contradistinction to the ususl view: we interpret ansluytic
functions 3= approximations to the finits, discrete combinztoric
functions required by our topologu: rather than the other wsy
sround., Given the correct discrete unit snd topoleogy., the
combinztoric summation provide more accurates inforwztion Lthan
does the anzslutic intedrsl.

T oan

M
Inh 8 sense, the set of points € in R is the union f the imags
sats for gll classee in the domain., Thus we mnay define &
distance function on S. We may also define 2 distance function
on 2 discrete set (3 non-Hausdorff space) but it will be "multi-
valued" in the sense that the ordering betueen elensnts nes ot
produce 3 single chain: thus there wnay be mors than on= "pzZth"
between 2lemsnts. If we take the distance functin such thal the
nunber of =lem=nts traversed (s minimal. then st best we must
assume that elements in the string defining the distancs
[{minimal simple chain) between any two =lements] may Iin fact be
twins under the equivalence class defined by the distance
function. Clearly we do not care if the MAFS are strictly
recursive; they mauy be anslytic so lond 2= we keep in wind the
constraints on the space.

The formalism reviewad here has important results with regard to
the combinatorial hisrarchy. Of special interest ig ths
susceptibility of the combinatorial hierarchy to paradox, Tt is
gutreme}g important that such models bs consistently interpretsd
If one is to avoid paradox. After all: the other ingredient
patiently awzits the unwarg = the very naturs of a hisrarchicsl
model is s2lf-referencs. n sgddition, this work has other
results of importance for the combinztorial hisrarchy. MWz hz.e
demonstrataed ways to avoid decidability issuss. concerns over
slgorithmic randomness, the problesms encountared with distance
functions on discrete or combinatorial topologies, and finzslly-
interpretations of probabilities.

Faradomues are resolvable. They are neither intrinsic tc 2 sustew
or model, nor can they be devastating to the joint consistencu
and completenczss of the formalism. In another paper we have
applied these results to locate and expose 3 syntactic flaw in
the oridinal proof of Godel's Second Incompleteness Theorem.
Similar results may be expected to follow where the lodician has
sesumed the leditimete smbedding of & parados in his proof
schema. Hierarchical modzls are necessary for the reprezentzstion
of parsdox. The levels of a hierarchical model may be
interpreted as types or even more consistent with the present
work: 3s levels a 1la Frege. It is the view of the author thst
hierarchical modezls ars desirable and necessary. It will not do
to exclude hierarchies nor to limit the types thast way bs used.
Nar is it sufficient to eliminate quantification over infinits
dowaine. Constructive formalisms which adhere strictly to
finitism are necessary. This is due to the fact thst one must

&



not confuse types when the operztions involved ars i
Tup= specific operations skound in higrarchical syst
generzllu not possikle to derive a consistent interpret 0
gz operztion defined 2t 2 hidh level of = h|~r;r:hg Wwhen it
be gpplied to 2 lowsr lewvel. The resson i cl=ar: the refinsmzn
which makes up & hierarchy is & psrtislly-ordersd partiticon
lzttice. The mzps defined zcrossz refinemnsnt zre mznoe-to-one.,
Thers iz no unique invarss. Thus, the concept of infimity wsw
not be interpreted at the level of number and it is fallaciou
2rigede in proofs which combine them in srdumsnts 2= though th
two were merdeable - that is, that one could bagin with = finite
st z2nd recursively gensrate 2 denunsrabls set in the usuzl
sengs,. This iz 2 common flsw in procf schemszzs which use
dizdgonslization 22 wsed by Kleens., The contradicticm iz obvicu:s
in such casss. 0Ohne must have "completed the infinite" in ords
to derive some property which is then applied te thae recursively
anumerated menbers.  And one dood contradiction lzads to
another. ..

Farazdo:, that is.
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